2011年12月14日星期三

Hydraulic machinery

Hydraulic machines are machinery and tools that use liquid fluid power to do simple work. Heavy equipment is a common example.

In this type of machine, hydraulic fluid is transmitted throughout the machine to various hydraulic motors and hydraulic cylinders and which becomes pressurised according to the resistance present. The fluid is controlled directly or automatically by control valves and distributed through hoses and tubes.

The popularity of hydraulic machinery is due to the very large amount of power that can be transferred through small tubes and flexible hoses, and the high power density and wide array of actuators that can make use of this power.

Hydraulic machinery is operated by the use of hydraulics, where a liquid is the powering medium.

A fundamental feature of hydraulic systems is the ability to apply force or torque multiplication in an easy way, independent of the distance between the input and output, without the need for mechanical gears or levers, either by altering the effective areas in two connected cylinders or the effective displacement (cc/rev) between a pump and motor. In normal cases, hydraulic ratios are combined with a mechanical force or torque ratio for optimum machine designs such as boom movements and trackdrives for an excavator.

If a hydraulic rotary pump with the displacement 10 cc/rev is connected to a hydraulic rotary motor with 100 cc/rev, the shaft torque required to drive the pump is 10 times less than the torque available at the motor shaft, but the shaft speed (rev/min) for the motor is 10 times less than the pump shaft speed. This combination is actually the same type of force multiplication as the cylinder example (1) just that the linear force in this case is a rotary force, defined as torque.

For the hydraulic fluid to do work, it must flow to the actuator and or motors, then return to a reservoir. The fluid is then filtered and re-pumped. The path taken by hydraulic fluid is called a hydraulic circuit of which there are several types. Open center circuits use pumps which supply a continuous flow. The flow is returned to tank through the control valve's open center; that is, when the control valve is centered, it provides an open return path to tank and the fluid is not pumped to a high pressure. Otherwise, if the control valve is actuated it routes fluid to and from an actuator and tank. The fluid's pressure will rise to meet any resistance, since the pump has a constant output. If the pressure rises too high, fluid returns to tank through a pressure relief valve. Multiple control valves may be stacked in series [1]. This type of circuit can use inexpensive, constant displacement pumps.

Closed center circuits supply full pressure to the control valves, whether any valves are actuated or not. The pumps vary their flow rate, pumping very little hydraulic fluid until the operator actuates a valve. The valve's spool therefore doesn't need an open center return path to tank. Multiple valves can be connected in a parallel arrangement and system pressure is equal for all valves.

没有评论:

发表评论